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SUMMARY 

As part  of a program t o   s t u d y   t h e   f a n   n o i s e   g e n e r a t e d   f r o m   t u r b o f a n   e n g i n e s ,  
f l u c t u a t i n g   s u r f a c e   p r e s s u r e s   i n d u c e d  by fan- ro tor  wakes w e r e  measured  on  core-  and 
bypass-s ta tor   ou t le t   gu ide   vanes   o f  a modif ied  s ta tor   assembly  of  a JT15D-1 engine. 
T e s t s  were conducted   wi th   the   engine   opera t ing   wi thout   an   in f low  cont ro l   device   on   an  
outdoor t e s t  s t a n d   a n d   i n   f l i g h t   w h i l e  mounted  beneath t h e  wing  of a tes t -bed  a i r -  
c raf t .   Resul t s   o f   da ta   ana lyses  show t h a t  as the  aerodynamic  wakes  shed  from  the 
r o t o r  changed  amplitude  and  shape  with  engine  speed,  the  surface  pressures  on  the 
s t a t o r   v a n e s   e x h i b i t e d   t h e   e f f e c t   o f  wake changes.  Both core  and  bypass  vanes  had a 
nonuniform  spanwise  distribution  of  narrow-band  f luctuating  pressure a t  blade-passage 
frequencies  with  high  coherence  between  measurement  locations.   Pressures  measured a t  
fan-rotor   blade-passage  f requencies  were g e n e r a l l y   h i g h e r   f o r  s t a t i c  cond i t ions   t han  
f o r   f l i g h t .  A study of t h e  random c h a r a c t e r i s t i c s  of t hese   ampl i tudes   i nd ica t ed   t ha t  
the  tone  ampli tudes w e r e  less s t ab le   unde r  s t a t i c  c o n d i t i o n s   t h a n   i n   f l i g h t .  As t h e  
engine  speed  increased  during  both s t a t i c  and f l i g h t   t e s t s ,   t h e   c o r e   a m p l i t u d e s  gen- 
e r a l l y  became less dominated by noise  and  the  bypass  amplitudes became  more dominated 
by noise .   Fluctuat ing  pressures   measured a t  the  blade-passage  frequency of the  high-  
speed  core  compressor  were  interpreted  to  be  acoustic;   however,   disturbance trace 
v e l o c i t i e s   f o r   e i t h e r   t h e   c o n v e c t e d   r o t o r  wakes o r   a c o u s t i c   p r e s s u r e s  were d i f f i c u l t  
t o   i n t e r p r e t   b e c a u s e  of t h e  complex  environment. 

INTRODUCTION 

Noise  research on h igh-bypass- ra t io   tu rbofan   engines   has   ident i f ied  numerous 
noise-generating mechanisms assoc ia ted   wi th   the   ro tor   b lades   and   s ta tor   vanes .   Tyler  
and   Sof r in   ( re f .  1 )  p resented  r e su l t s  which  indicated  that   aerodynamic wakes l eav ing  
t h e   r o t o r  may i n t e r a c t   w i t h   s t a t o r   v a n e s   t o   s e t   u p  complex p r e s s u r e   p a t t e r n s   i n   t h e  
i n l e t   d u c t .  Hanson ( r e f .  2) ,  by using  random-pulse-amplitude  and  position-modulation 
theo ry ,   s tud ied   t he   f a r - f i e ld   no i se   r e su l t i ng   f rom  the   i n t e rac t ion  of t h e   r o t o r   v i s -  
cous wakes wi th   s ta tor   vanes   in   subsonic   ax ia l - f low  fans .   Researchers   genera l ly  
recognized   tha t  s t a t i c  t e s t i n g  of   turbofan  engines   usual ly   produced  far-f ie ld   noise  
l e v e l s  which  were g rea t e r   t han   t hose   ob ta ined  from f l i g h t .  Many s t u d i e s   ( r e f s .  3 
t o  8) suggested  that   inf low  turbulence  and  shroud  boundary-layer   effects   were some of 
the   causes   o f   these   h igh   no ise   l eve ls .  These s tud ie s   r e su l t ed   i n   t he   deve lopmen t   o f  
in f low- turbulence   cont ro l   devices   and   produced   s ign i f icant   ins ight   in to   s imula t ing  
f l i g h t   n o i s e   w i t h  s t a t i c  tests. 

Concurren t   wi th   th i s   no ise   research ,   which   tended   to   concent ra te   on   fa r - f ie ld  
noise   and i t s  r e l a t i o n s h i p   t o   t h e   s o u r c e   n o i s e ,   r e s e a r c h e r s  were s tudy ing   t he   sou rce  
mechanisms wi th in   t he   t u rbo fan  as  they   r e l a t ed   t o   t he   ro to r -wake   de fec t  s t r u c t u r e ,  
r o t o r - t i p   v o r t e x   s h e d d i n g ,   s u p p o r t - s t r u t   p o t e n t i a l   f i e l d ,   a n d   s e p a r a t i o n   d i s t a n c e  
between t h e   r o t o r  and  the  stator  vanes  downstream of the  rotor .   References 9 t o   1 5  
are a f ew  o f   t he   r e sea rch   e f fo r t s   s tudy ing   va r ious   a spec t s   o f   t hese  mechanisms.  Both 
ana ly t ica l   and   exper imenta l   s tud ies   us ing   var ious   types   o f   wake-survey ,   ro tor   and  
s ta tor-response  instrumentat ion  have  been  conducted.  Fan r i g s  which  produced experi- 
mental   data  were des igned   or   chosen   for   research  so  that   hardware  complicat ions would 
b e   k e p t   t o  a minimum, thus  permit t ing  researchers   minimal   compromise  with  analyt ical  
work. The a n a l y t i c a l  work has  generally  been  based  on  incompressible  f low  with two- 
dimensional  compact  source s t r ip  theo ry  as a p p l i e d   t o   t h e   r o t o r   b l a d e s   a n d   s t a t o r  
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vanes.  References  16  and  17  have  extended  the  analytical work to  include some 
compressible-f low  effects   with noncompact sou rce   d i s t r ibu t ion .  

Most experimental   research  has 'men  done on a basic f an   r i g ,   a l t hough   r e fe r -  
ences 5, 9, and  14  have  indicated a need for experimental  data on a "real engine." 
Addi t iona l ly ,   wi th in   the   l a rge  body  of f l uc tua t ing   p re s su re   da t a   t aken  from s t a t o r -  
vane s tud ie s ,   ve ry  few re l i ab le   da t a   have   been   r epor t ed   i n  a spanwise  direct ion.  The 
methodology  has  usually  been t o  measure   f luc tua t ing   pressures   a long   the   chord   l ine  a t  
midspan  of a stator vane  and to  assume  knowledge  of t he   spanwise   d i s t r ibu t ion .  

The National  Aeronautics  and  Space  Administration (NASA) has   recognized  the  need 
t o  s tudy   t he   s imu la t ion   e f f ec t iveness   be tween   t he   no i se   gene ra t ed  by a turbofan 
engine when mounted on a s ta t ic  t e s t  s t a n d   a n d   t h a t   g e n e r a t e d   i n   f l i g h t .  To address  
t h i s   n e e d ,  NASA in i t i a t ed   an   expe r imen ta l   r e sea rch   p rog ram  us ing  a h i g h l y   i n s t r u -  
mented JT15D-1 engine'   which  had  been  been  sl ightly  modified.  Mzmerous r e s u l t s   o f  
t h e  program  have  been  reported. These r e s u l t s   h a v e   b e e n   r e l a t i v e  t o  the   in f low-  
control-device  comparisons (refs. 6 and 7 ) ;  t o  the  development  of a measurement tech-  
n i q u e   t o   c o n v e r t   n o n s t a t i o n a r y   f l i g h t   n o i s e   i n t o  narrow-band s t a t i o n a r y   n o i s e  
( r e f .  1 8 ) ;  and t o  t h e   e f f e c t s   o f  s t a t i c ,  s imula ted   forward   speed   and   f l igh t  tests on 
bo th   uns t eady   f an -b lade   p re s su res   and   acous t i c   f a r - f i e ld   r ad ia t ion   ( r e f s .   19   t o  22 ) .  

~n o b j e c t i v e  of the  program w a s  t o   s t u d y   t h e   r o t o r - i n d u c e d   f l u c t u a t i n g   p r e s s u r e  
l e v e l s  (FPL) a n d   t h e i r   d i s t r i b u t i o n   a l o n g   t h e   s p a n   o f   b o t h   t h e  core- and  bypass- 
s t a to r  out le t   guide  vanes  of   this   engine.  The p u r p o s e   o f   t h i s   r e p o r t  i s  t o  p r e s e n t  
t h e   r e s u l t s   o f   m e e t i n g   t h i s   o b j e c t i v e ,   t h u s   f u l f i l l i n g   t h e   n e e d   f o r   s p a n w i s e   d a t a  
which  has   of ten  been  expressed.   (See  refs .  5 and 14.  The p resen t   da t a ,   ob ta ined  
under s t a t i c  a n d   f l i g h t   c o n d i t i o n s ,  are  unique   and   provide   the   oppor tuni ty   to   s tudy  
exper imenta l ly   the   s ta tor -vane   response   under  two w i d e l y   d i f f e r e n t  t e s t  condi t ions  
f o r   a n   a c t u a l   e n g i n e .  The d a t a  are  analyzed  by  using time h i s t o r i e s ,   t h e   s i g n a l -  
enhancement  technique,  narrow-band spectra, probabi l i ty -dens i ty- func t ion   ana lys i s ,  
and  phase-   and  coherence-funct ion  analysis .   Comparisons  between  the  s ta t ic   and 
f l i g h t   r e s u l t s  are made. 

SYMBOLS AND ABBREVIATIONS 

A 

BPF 

BW 

F1 

2F1 

F2 

2F2 

F1  BPF 

maximum a l t i t u d e  

blade-passage  frequency 

bandwidth, Hz 

fundamental   tone  associated  with BPF of  low-speed f an  

f i r s t  harmonic  of F1 

fundamental   tone  associated  with BPF of  high-speed  compressor 

f i r s t  harmonic  of F2 

low-speed fan-rotor  blade-passage-frequency  fundamental  tones 

-~ - .  ~~ 

'Manufactured by P r a t t  & Whitney A i r c r a f t  of  Canada. 
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high-speed-compressor  blade-passage-frequency  fundamental  tones 

f l u c t u a t i n g   p r e s s u r e  level, (2.9 X 10"' ps i ) ,  dB 

frequency, Hz 

random no i se ,   Gauss i an   d i s t r ibu ted  

p r o b a b i l i t y   d e n s i t y   f u n c t i o n  

p r o b a b i l i t y   d e n s i t y   r a t i o  

p r o b a b i l i t y   d e n s i t y  

r a t io  of s i n e   v a r i a n c e  t o  noise  variance,   a2102 
s n  

rubberized  coat ing 

stator-mounted  transducer 

s i n e   s i g n a l ,  A s i n ( w t  + 9 )  

t i m e  per iod of d a t a   a n a l y s i s ,  sec 

time, sec 

amplitude 

coherence  function 

s t a t i c -minus - f l i gh t   f l uc tua t inq   p re s su re   l eve l ,  dB 

s t a t i c -minus - f l i gh t   p robab i l i t y   dens i ty  r a t io  

s o l i d i t y  

s t anda rd   dev ia t ion  of no i se   s igna l ,  mV 

var iance of Gaussian-dis t r ibuted random no i se ,  mV 2 

var iance of s i n e   s i g n a l ,  mv2 

random phase  angle,   deg 

radian  frequency, 27rf 

DESCRIPTION OF MPERIMENT 

Engine 

The test engine,  shown i n  the photograph  and  sketch of f i g u r e  1 ,  was a JT15D-1 
two-spool  turbofan  engine. It b a s i c a l l y  w a s  an  early-production model w i th   t he  
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des iqn   fea tures  summarized i n  t a b l e  I. The engine  had  been  modified (see t a b l e  I) so 
that   the   rotor- interact ion  tone  with  the  core-s ta tor   vanes would be a c o u s t i c a l l y   c u t  
of f  and produce  lower  broadband  noise. 

Figure l ( b )  shows some fea tu res   o f   t he  test  engine. The i n l e t   u s e d   i n   t h e  
s ta t ic  tests, a l though   no t '   t he   one   u sed   i n   f l i gh t ,  w a s  made o f   f i b e r g l a s s   t o   t h e  
d imens ions   o f   the   f l igh t   in le t .   S ix   suppor t  s t r u t s ,  which are l o c a t e d   i n   f r o n t  of 
t he   cen t r i fuga l   co re   compresso r ,   a r e   pos i t i oned   beh ind   t he   co re /bypass - s t a to r  assem- 
bly.  The s k e t c h   a l s o  shows a m u f f l e r   f i t t e d  t o  t h e   a f t   p o r t i o n  of the  engine.  The 
muf f l e r   u sed   du r ing   t he   s t a t i c  tests had a d i f f e r e n t   d e s i g n  from t h a t   u s e d  i n  f l i g h t .  
The purpose  of  using a m u f f l e r   i n   t h e s e   t e s t s  was t o  reduce   o r   e l imina te  any  a f t  
no i se   r ad ia t ion  from the  bypass  duct  which  might  compromise  measurements  of  the 
f ront-end  radiated  fan  noise .  

Two photographs   o f   the   ro tor   b lades   a re   p resented   in   f igure  2. Typical  metal  
angles  and  dimensions , a s  measured  on t h i s   e n g i n e ,  are presented  i n  t a b l e  11. A 
c h a r a c t e r i s t i c   a f f e c t i n g   t h e   f l o w   t h r o u g h   t h e   b l a d e s  i s  t h e   r a i s e d   p o r t i o n s  on t h e  
p re s su re   and   suc t ion   s ides  of t he   ro to r .  The la rges t   ra i sed   sur face   ( somet imes  
r e f e r r e d   t o   a s  a c l appe r )  is  des igned   t o  be in   c lose   p rox imi ty   w i th  a counterpar t  
su r f ace  on the   oppos i te   s ide   o f   an   oppos i te   b lade .   (See   f ig .   2 (a) . )  Once the   engine  
i s  s p i n n i n g   a t   a b o u t  2000 rpm, the   ro to r   b l ades  assume a p o s i t i o n  on the  hub so t h a t  
t h e s e   r a i s e d   s u r f a c e s   t o u c h   e a c h   o t h e r ,   t h u s   s t i f f e n i n g   t h e   r o t o r   b l a d e s .  !the o t h e r  
r a i sed   po r t ion  had a d i f f e ren t   des ign   f rom  tha t  of t he   c l appe r  which a d d i t i o n a l l y  
s t i f fened   the   b lade .   F igure   2 (b)  shows tha t   t he   b l ades   have  a high  degree  of t w i s t  
and a c o n s i d e r a b l e   v a r i a t i o n   i n   b o t h   t h e   m e t a l   i n l e t   a n d   o u t l e t   a n g l e s .  This f i g u r e  
a l s o  shows the  core-s ta tor   vanes  and  the w a l l  s e p a r a t i n g   t h e   c o r e   d u c t  from the  
bypass  duct. This wa l l  i s  loca ted  j u s t  downstream  of the   ro tor   b lades .  

Fiqure 3 presents   both a photograph of the  stator  assembly  showinq  the  core and 
bypass  vanes and  a sketch  identifying  the  measurement  transducers and the i r   loca-  
t i o n s .  The photoqraph  (fiq.  3 ( a )  ) shows the   sp l i t   bypass   vanes   a long  w i t h  the  
transducer  posit ions.   Table I1 a lso   p resents   meta l   angles  and a s s o c i a t e d   s t a t o r  
dimensions  as  measured on the  engine.  

Test F a c i l i t i e s  and Setup 

S t a t i c   t e s t .  - A photograph of the  engine mounted  on t h e   o u t d o o r   t e s t   s t a n d   a t  
t h e  Ames Research  Center i s  shown i n  f i g u r e  4. The engine w a s  mounted so  t h a t  it w a s  
15 f t  above  the  concrete   surface  of   the tes t  a rea .  For t h e  results presented i n  t h i s  
r epor t ,  no inf low  control   device  covered  the  inlet .   Far-f ie ld   noise-measurement  
microphones  si tuated  on  poles  and on a t r a v e r s e   r a i l  may be  seen.  These  microphones 
were  placed  approximately 1 2 f t from the  engine  fan  face.   (See  ref .  20. ) 

Fl igh t  test.- Fiqure 5  shows the  research  engine  suspended  beneath  the wing  of 
t h e   t e s t   a i r c r a f t .  The a i r c ra f t   ( a   tw in -eng ine  OV-1B) was flown  with  the  starboard 
T53 turboprop  enqine  shut down and feathered  to   minimize  inf low  dis tor t ion  during 
da ta   acquis i t ion   for   the   opera t ion  of the JT15D-1. Resul t s  of the   fa r - f ie ld   no ise  
measurements may be found i n  re ference  21. 

Test conditions.-   Tests were  conducted a t  t h e   o u t d o o r   t e s t   s i t e   d u r i n g  a time 
period when sur face  wind speeds were less than 6 knots and the  ambient  temperature 
w a s  approximately 62OF. Data  were  obtained a t  four  nominal  engine  speeds of 6750, 
10 500, 1 2  000, and 13 500 rpm. 
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Dur ing   t he   f l i gh t  tests, the t e s t - b e d   a i r c r a f t  w a s  flown a t  a c o n s t a n t   a l t i t u d e  
of 300 f t  with  the  f l ight   speed  maintained a t  a constant  nominal 130 knots.  Wind 
speeds  from the su r face  to the f l i g h t   a l t i t u d e  were less than 10  knots,  and  tempera- 
t u r e s  measured  from t h e   s u r f a c e  up t o   t h e   f l i g h t   a l t i t u d e  were a nominal  60°F.  For 
t h e s e   f l i g h t  tests, engine  speeds  ranged from a nominal  6700 r p m  to   approximately 
15 000 rpm. 

Ins t rumenta t ion  

Descr ipt ion  and  mounting  of   pressure  t ransducers . -   Figure 3 p r e s e n t s  a photo- 
g raph   and   ske t ch   i den t i fy ing   t he   l oca t ions   o f   t he   min ia tu re   p re s su re   t r ansduce r s   u sed  
i n   t h e s e  tests. These  transducers  had a 0.04-in-diameter  sensing area wi th  a sens i -  
t i v i t y   o f  1 V / p s i .  For t h i s   a p p l i c a t i o n   t h e r e  is  an  es t imated  accuracy  of  23 dB 
because  of  the  harsh  environment.  The stator-mounted  transducers (SMT), w i th   i nd i -  
v idua l   loca t ions   denoted  by le t ter  des igna t ions  A t o  E, were bonded t o   t h e   s u r f a c e   o f  
t he   p re s su re   s ide   o f   t he   vanes   a long   t he   span   and  0.15 in .   f rom  the  vane  leading 
edge. Two t r ansduce r s  were mounted a t  l o c a t i o n s  A and E ( f i g .   3 ( b )  ) so t h a t   t h e y  
would  be i n   t h e  boundary  layer   of   e i ther   the  rotor   hub  or   the  bypass-duct   outer  wall. 
The SMT's were bonded  with a rubber ized  material (RTV). F igu re   6 (a )   p re sen t s  a 
sketch  of  the  mounting  technique  which shows the  bonding material cove r ing   t he   t r ans -  
ducers. This technique w a s  used t o   p r o t e c t   t h e   t r a n s d u c e r s  f rom  any  foreign  objects  
which may be c o n t a i n e d   i n   t h e   a i r f l o w .  The t o t a l   t h i c k n e s s  of   the  project ion  above 
the   vane   sur face  w a s  no g r e a t e r   t h a n  0.014 in .  This mounting  technique w a s  eva lua ted  
and  determined to   p re sen t   min ima l   i n t e r f e rence   w i th   t he   measu red   p re s su res .  (See 
r e f .  23.) 

Data-acquis i t ion  system.-   Figure  6(b)  shows a ske tch  of the   da ta -acquis i t ion  
ins t rumenta t ion .   S iqna ls  from t h e   s t a t o r   t r a n s d u c e r  were t ransmit ted  through a hard- 
wired  system in   t he   eng ine   t o   s igna l - cond i t ion ing  and analog  frequency-modulated 
magnetic  tape-recording  equipment. The ske tch   a l so  shows t h a t  a s i g n a l  w a s  recorded 
which  gave the p o s i t i o n  of an  instrumented  rotor  blade.   This  once-per-revolution 
pulse  permitted  the  accurate  measurement of fan  speed  and  the  appl icat ion of t he  
s iqnal-enhancement   technique  to   s tudy  the  f luctuat ing-pressure  data .  The complete 
measurement  system of f i g u r e  6 ( b )  had a flat   response  over  the  frequency  range  from 
20 Hz t o  20 kHz.  The dynamic  range of the  system w a s  120 t o  170 dB. 

Dur ing   t he   f l i gh t  tests, a i r c r a f t   v a r i a b l e s   ( s p e e d ,   a l t i t u d e ,   r o l l ,  etc.)  and 
JT15D-1 engine   var iab les   ( fue l   f low,   in le t   and   bypass   p ressures   and   tempera tures ,  
etc.) were measured  and  recorded  by  using a digital-pulse  code-modulated  system. 
Details on a l l  signal-conditioning  and  data-acquisit ion  systems  onboard  the a i r c r a f t  
may be found i n   r e f e r e n c e  24. 

RESULTS AND DISCUSSION 

A l l  d a t a  w e r e  processed  over a frequency  range  from 0 to  20 kHz by using a f a s t  
Fourier  transform,  dual-channel  analyzer and per ipheral   equipment   to   obtain  averaged 
p res su re  t i m e  h i s t o r i e s ,  narrow-band  constant-bandwidth spectra, signal  enhancement, 
probabi l i ty   funct ions,   coherence,   and  phase  information.  A l l  spec t ra l   da ta   have   an  
analysis  bandwidth of BW = 50 Hz and were analyzed  for  more than 3 sec. This  pro- 
cedure  insured that the random e r r o r  w a s  always less than fl .5 dB with a 90-percent 
conf idence   l eve l .  The r e l a t i o n s h i p s  of t hese   da t a  as a func t ion  of engine  speed,  and 
wi th   r e spec t   t o   t he i r   spanwise   l oca t ions ,  were s tudied  and are d i s c u s s e d   i n  this 
sec t ion .  
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Static-Test Resul t s  

The i n i t i a l   s t u d y  of  the  pressure  data  took  the  form of cons ider ing   the  ampli- 
tude  of pressure  as it varied  with time. Two techniques   for   s tudying  these d a t a  are 
as follows: ( 1  1 determining  the  unenhanced  average  pressure  per  increment of time, 
and ( 2 )  determining  the  s ignal-enhanced  pressure per increment of time. Although the 
former is accomplished  by  averaging a defined number of samples of pressure over a 
time per iod  which is not  synchronized  with the r o t o r   r e v o l u t i o n ,  the s igna l -  
enhancement  technique  uses a once-per-revolution  pulse to  permit the  synchronous 
averaging of the p res su re  as it var ies   wi th  time r e l a t i v e   t o  the eng ine   ro t a t iona l  
speed.   This   resul ts   in   averaging  out   any  contaminat ing  noise   and  presents   the peri- 
od ic   po r t ion  of the  averaged  pressure time trace. (See   re f .  25.) Since the measured 
p res su res  are e s s e n t i a l l y   t h e   r e s u l t s  of pe r iod ic  wakes  shed  from the   ro to r   b l ades ,  
it w a s  expec ted   tha t  the unenhanced p res su re  time trace (method 1 ) would appear t o  be 
s t r o n g l y   s i n u s o i d a l  a t  the   fan- ro tor   b lade-passage   f requency ,   here inaf te r   re fe r red   to  
as BPF and designated as F, . 

Figures  7 and 8 show some t y p i c a l  measured  unenhanced  and  enhanced r e s u l t s  of 
pressure  time traces d i s p l a y e d   i n  a 4-msec time increment.  Figure 7 ( a )  shows some 
unenhanced  average  pressure time traces measured a t  l o c a t i o n  D a t  engine  speeds of 
1 2  000 and  13 500 rpm f o r   t h e  s ta t ic  tests. A t  1 2  000 r p m ,  t h e   d a t a   s u g g e s t   t h a t  a 
s t rong   tone  is p resen t ;  however, the presence  of a tone a t  13 500 rpm is  not  so w e l l -  
def ined.   Figure  7(b)  shows t h e   r e s u l t s  of signal  enhancing  the  data  measured a t  
l o c a t i o n  D for   the  four   enqine  speeds of the  s ta t ic  test. By comparinq  the unen- 
hanced   da t a   i n   f i gu re   7 (a )  a t  1 2  000 rprn with its enhanced   counterpar t   in   f ig -  
u r e   7 ( b ) ,  it may be seen that  a s i n u s o i d a l   s i g n a l   t e n d s   t o  compose the s i g n a l   i n  
f i gu re  7 ( a  1. The data  comparison of f i g u r e  7 a t  13 500 rpm does  not make such a 
clear d i s t inc t ion .   Add i t iona l ly ,  by comparing the d a t a   i n   f i g u r e   7 ( b )   f o r   t h e   f o u r  
d i f fe ren t   engine   speeds ,  one may see tha t   no t   on ly   does   t he   ampl i tude   va ry   bu t   a l so  
t h e  wave-shape  changes of the   p ressure  trace do not  appear as smoothly  increasing 
frequency  pat terns  as the  engine  speed  increases.  

Fiqure 8 i n d i c a t e s  the changing  character  of t h e   s t a t o r   r e s p o n s e   i n  a spanwise 
d i r ec t ion .   Th i s   f i gu re  compares  the  signal-enhanced da ta  of pressure  time traces f o r  
a constant  engine  speed of  13 500 rpm for   both  the  core  ( A , B )  and bypass (D,E) loca- 
t i o n s .  The f i g u r e   i n d i c a t e s   t h a t  a spanwise   d i f fe rence   in  wave shape is measured a t  
each  locat ion on the   core  and  bypass s t a t o r s .  Thus, t he   s t a to r   f l uc tua t ing -p res su re  
d a t a  of f i g u r e s  7 and 8 show p res su re - t r ace   d i f f e rences  a t  a s i n g u l a r   s t a t o r   l o c a t i o n  
as a func t ion  of  engine  speed  and  differences  in  shape  along a rad ia l   spanwise   d i rec-  
t i o n  a t  a constant  engine  speed.  These data,  be l i eved   t o  be unique, are similar i n  
appearance  and may be r e l a t e d  to aerodynamic r e s u l t s ,  whereby  hot-wire  anemometry 
techniques were used t o  measure  the  veloci ty-defect   f low  prof i les   behind  rotors   and 
ahead of stators (See r e f s .  9 to  14  and 26. ) 

In  order  to  measure  the  magnitudes of the  unenhanced  f luctuat ing  pressures  a t  
the  fan-rotor  BPF and a t  its harmonics on the   s t a to r   vanes ,  narrow-band spectral 
ana lyses  (BW = 50 H z )  were obta ined   for   the  s ta t ic  and f l i g h t  tests. Figures 9 
and 10 p r e s e n t   t h e   r e s u l t s   f o r   t h e  static  tests.  Figure 9 shows the  spectra f o r   t h e  
core  ( A , B ) ,  and f i g u r e  10  shows the  spectra for   the  bypass  ( D , E )  for   the   range  of  
engine   ro ta t iona l   speed .  Data f o r   l o c a t i o n  C are n o t   a v a i l a b l e   f o r   p r e s e n t a t i o n .  
These spectra indica te   the   p resence  of the   fan- ro tor  BPF, re la ted  harmonics  (or l ack  
of t h e m ) ,  and  combination  tones  ( indicated by F1, 2F1, etc. 1 .  Large mul t ip l e   f r e -  
quencies  below 3 kHz a t  r a d i a l   l o c a t i o n s  D and E f o r  13  500 rpm are bel ieved  to   be 
t h e   r e s u l t  of  aerodynamic  shocks  created  by the supersonic   rotor-blade t i p  speed. 
(See r e f  21 .) A l s o ,  t h e   d a t a  show responses a t  blade-passage  frequencies  compatible 
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with  those of the  high-speed  compressor  (designated  as  F2).  Although  the  aerody- 
namic  wakes shed  from the  fan  rotor   impact  on t h e   s t a t o r s  and genera te   the  F1 f r e -  
quenc ie s ,   t h i s  would not be the  case  for  the  high-speed  compressor.   (See  f ig.  1 ( b )  
The F BPF tones  are   generated by the  core-compressor  fan  blades  cutt ing  the wakes 
shed &om the  engine  support   s t ruts   ahead of the  compressor. (See ref  . 6.) Acoustic 
p r e s s u r e s   a t   t h e s e  F2 BPF tones  have  been  measured i n   t h e   f a r   f i e l d .   ( S e e   r e f s .  6 
and  19.)  Because of t h i s ,   t he   f l uc tua t ing   p re s su res  a t  the  F2 BPF seen   in   f igures  9 
and  10 a re   thought   to  be acous t i c .  The magnitudes of t he  F2 FPL's are gene ra l ly  
la rger   for   the   core   loca t ions   than   for   the   bypass   loca t ions ,  which  would be reason- 
a b l e   f o r   t h i s  test conf igura t ion .  

Figure 11 compares  the  core  and  bypass FPL's a t  the  F1 BPF obtained from f i g -  
u r e s  9 and 10. The da ta  show a s i g n a l  which is gene ra l ly  above  the  broadband  noise 
by  approximately 10 dB or more with the l e v e l s   f o r   b o t h   s t a t o r s   f a l l i n g  between 
140  and  165 dB.  The broadband  noise  levels were p lo t t ed   t o   pe rmi t  a la ter   comparison 
wi th   f l i gh t .   These   l eve l s ,  which were measured a t   t h e  base of the  tones,   are  of t en  
s a i d   t o  be assoc ia ted   wi th   the   tu rbulence  of t he   ro to r  wakes.  (See r e f .  25.) Fig- 
u r e  11 a l s o  shows  an  obvious  difference  between  the  core  data and the  bypass  data.  
A s  the  engine  speed  increases,   the  core  data  tend  to  increase  in  amplitude,   whereas 
the  bypass  data  have a d ip  a t  10 500  rpm. 

To i n v e s t i g a t e   t h e   c h a n g e   i n   f l u c t u a t i n g   p r e s s u r e s   a t   t h e   r o t o r  BPF across   the  
core-  and  bypass-stator  span,  the FPL's were p l o t t e d   a s  a percent   of   span  length  and 
a r e   p r e s e n t e d  i n  f i g u r e  12. F igure   12(a)  shows t h a t   f o r   l o c a t i o n s  A and B on t h e  
core-stator  vanes,   changes  on  the  order  of 5 t o  1 0  dB o c c u r ,   e i t h e r   r i s i n g   o r   d r o p -  
p ing  as a function  of  engine  speed. An except ion  occurs  a t  10 500 rpm where the  
spanwise   d i s t r ibu t ion  i s  f l a t .  For the   bypass   s t a to r   ( f i g .   12 (b )  1, it can  be  seen 
t h a t  when moving radial ly   outward  f rom  locat ion D t o  E, i n c r e a s i n g   f l u c t u a t i n g   p r e s -  
sures are measured. I t  is  a lso   observed   tha t   the   lowes t   and   the   l eas t   change  i n  
pressure  magnitudes  occurs a t  10  500 rpm. 

Figure 13   presents   the  F2 FPL measured   on   the   core   and   bypass   s ta tors   for   the  
engine  speeds  of  the s ta t ic  tests. A s  ment ioned   prev ious ly ,   the   s igna l  i s  be l ieved  
t o  be   acous t i ca l ly   r e l a t ed   t o   t he   co re   compresso r .  It i s  obse rved   t ha t   t he   co re   da t a  
seem t o  have a b e t t e r   r a t i o  of   s ignal   to   noise   than  the  bypass   data ,   nei ther   of   which 
is  a s  good a s   t h e   r a t i o s   i n   f i g u r e  11. It can  be s e e n  t h a t   t h e  F2 FPL d a t a  seem t o  
be more c o n s i s t e n t  i n  i nc reas ing   i n   l eve l   a s   eng ine   speed   i nc reases   t han   t he  F1 FPL 
data.  It may also  be  observed  that   the   magni tudes of t he  F FPL d a t a   i n   t h e   c o r e   a r e  
l a rge r   t han   i n   t he   bypass ,   w i th  no  measurable  tone a t  l o c a t l o n  E a t  a speed   grea te r  
than 6750 rpm. 

2 

Hanson ( r e f .  2 )  has   discussed  the  turbulence  associated  with  the  aerodynamic 
v e l o c i t y   d e f e c t  of t he  wake shed  behind a rotor   blade.   This  wake may have  both  an 
amplitude and a posit ion  modulation. The posit ion  modulation is usua l ly  small; how- 
ever,   the  amplitude  modulation may be seve ra l   o rde r s  of magnitude  greater  than  the 

! average  magnitude.  Thus,  in  lieu of a pure  sinusoidal-wave  character  seen by the  
s t a t o r  a t  the   ro to r  BPF, a s igna l   such   as   tha t   p resented   in   f igure   7 (a)  may be 
observed.  Signal  enhancement  (such  as  that  presented i n  f i g s .  7 ( b )  and 8)  may do 
l i t t l e  t o  improve  the wave shape .   Data   such   as   tha t   in   f igures  7 o r  8 could be 
e i t h e r  narrow-band random noise  or random noise  which conta ins  a pure  tone. A 
narrow-band s p e c t r a l   a n a l y s i s  of data,   such as t h a t   i n   f i g u r e s  7 or  8 (as presented 
i n   f i g .  9 f o r  unenhanced p r e s s u r e s ) ,  would not by i t s e l f   d e t e r m i n e   i f  a tone  con- 
t a ined   i n   no i se  w a s  of s teady  or   unsteady  ampli tude.  A s  p a r t  of t he   ana lys i s  of t h e  
da t a   ob ta ined   fo r   t h i s  report, it w a s  d e s i r a b l e   t o   i n v e s t i g a t e   t h e   a m p l i t u d e  
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s t a b i l i t y  of the   f an - ro to r  BPF tones   ( such  as t h o s e   s e e n   i n   t h e  spectra of f ig .  9 )  
for  t h e  s t a t i c  a n d   f l i g h t  cases. 

References 10 and 25 discussed  the  use  of   performing a narrow-band ana lys i s   o f  
the   enhanced   pressure  time signal   and  comparing  the  magni tude of t h e  BPF f rom  the  
r e su l t i ng   spec t rum  wi th   t ha t   ob ta ined  from the  spectrum  of   the  unenhanced  pressure 
time s i g n a l .  For c o n s t a n t   e n g i n e   s p e e d s ,   t h i s  permits a n   e s t i m a t i o n   o f   t h e  amount of 
uns teadiness  or randomness i n   t h e   f l u c t u a t i n g   p r e s s u r e   l e v e l  a t  t h e  BPF i n   t h e  peri- 
odic po r t ion   o f   t he   p re s su re  time s i g n a l .  It w a s  n o t e d   i n   r e f e r e n c e  20, however, 
t h a t  it is  v e r y   d i f f i c u l t   t o   m a i n t a i n  a cons t an t   f an   speed  when t e s t i n g   o u t d o o r s  
wi thout   an   in f low  cont ro l   device .  When the  engine  speed  changes,   phase  changes i n  
t h e   s i g n a l  measured  by t h e  s ta tor  t ransducers  may be expected t o  occur .   Since  the 
s ta t ic - tes t  d a t a   i n   t h e   p r e s e n t  report were ob ta ined   w i thou t   an   i n f low  con t ro l  
dev ice ,   t he   app l i ca t ion  of the   s igna l -enhancement   t echnique   ava i lab le   dur ing   th i s  
a n a l y s i s  would not   account   for   phase  changes  resul t ing  f rom  fan-speed  changes.  Addi- 
t iona l ly ,   the   compar ison   of   the  spectral  ana lys i s   o f   s igna l -enhanced   and   s igna l -  
unenhanced  pressures   cannot   account   for   the random phase  var ia t ions  which may occur  
i n   t h e   s i g n a l .   ( S e e   r e f .  27.)  References 5 and 28  d iscuss   th i s   ensemble-averaging  
technique  and compare i t  w i t h   t h e   a p p l i c a t i o n   o f   t h e  probability-density-function 
(PDF) ana lys i s   t echnique .  The PDF ana lys i s   pe rmi t s   one  t o  determine i f   t h e r e  i s  a 
tona l   s igna l   added   w i th   no i se  as w e l l  as a measure  of how uns teady   o r  random t h e  
amplitude is. S ince   the  PDF cons iders   on ly   the   s iqna l   ampl i tude ,  it i s  n o t   s u s c e p t i -  
b l e   t o   a n y   f l u c t u a t i o n   i n   f r e q u e n c y   o r   e n q i n e   r o t a t i o n a l   s p e e d   ( s u c h  as the  ensemble- 
averaging  technique)  or t o  any  random-phase var ia t ion   which  may occur. 

!l%e PDF a n a l y s i s  i s  b a s e d   o n   t h e   f a c t   t h a t  a d i sh - shaped   p robab i l i t y   dens i ty  
f u n c t i o n  w i l l  r e s u l t   f o r  a cons tan t -ampl i tude   s inusoida l  wave and t h a t  a Gaussian- 
shaped   p robab i l i t y   dens i ty   func t ion  w i l l  r e s u l t   i f   t h e  wave i s  narrow-band random 
noise.  Thus, i f   t h e  two s i g n a l s  are combined s o  t h a t  a s t a t iona ry   and   e rgod ic  
random-noise time h i s t o r y   a p p e a r s   i n   t h e   f o r m   o f  

i t  has  been shown (ref.  27)  t h a t   t h e   p r o b a b i l i t y   d e n s i t y  of x ( t )  i s  

I f   t he   va r i ance  of t h e   s i n e   s i g n a l  i s  o2 and t h a t   o f   t h e   n o i s e  i s  a2 t h e   r a t i o  of 
t h e  t w o   w i l l  be 

S n' 
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Typica l   p lo t s  of p ( x )   f o r   d i f f e r e n t   v a l u e s  of R a re   p resented  i n  f i g -  
ure  14. 'Ihis p l o t  shows t h a t   a s  R i n c r e a s e s ,   t h e   s i g n a l  becomes inc reas ing ly   s inu -  
s o i d a l   w i t h  a constant  amplitude.  'Ihe r a t i o  R may be p l o t t e d  as a funct ion  of   the 
p r o b a b i l i t y   d e n s i t y   r a t i o  PDR as determined by measur ing   the   ra t io   o f   the   average  
magnitude  of  the  side  peaks  to  the  magnitude  of  the minimum d e n s i t y   a t  x = 0 a s  
shown i n   f i g u r e  15. This f i g u r e  shows t h a t   a s   t h e  PDR increases ,   the   ampli tude of 
the   tone  becomes inc reas ing ly   s t ab le .  Thus, by measuring  the PDR, a  good q u a l i t a t i v e  
e s t i m a t i o n   o f   t h e   s t a b i l i t y   o f   t h e   t o n e  may be   a s ses sed .   In   con t r a s t   t o   t he   l imi t a -  
t i o n  of the  s ignal-enhancement   technique  discussed  ear l ier ,   the   l imitat ion  of   the PDF 
a n a l y s i s  is t h e   i n s e n s i t i v i t y   t o  a PDR of   uni ty .  With t h e s e   c o n s i d e r a t i o n s   i n  mind, 
t h e  PDF a n a l y s i s  w a s  used t o   s t u d y   q u a l i t a t i v e l y   t h e   d e g r e e  of  amplitude  steadiness 
i n   t h e   t o n e s .  To e n s u r e   t h a t   t h e   a n a l y s i s   e r r o r  was w e l l  below t h a t  of  the  measure- 
ment  e r r o r  of the   t ransducers ,   the  PDF of t he  F1 and F2 B P F I s  w a s  obtained by measur- 
i n g   t h e   r e s u l t i n g   s i g n a l   a f t e r   t h e   o v e r a l l   s i g n a l   h a d   b e e n   b a n d p a s s   f i l t e r e d   w i t h  a 
7-percent  bandwidth  of  the BPF. The analysis   t ime Ta was always  such  that   the  
minimum c r i t e r i o n   o f  Ta > 50/BW w a s  exceeded by a f a c t o r   o f  10. Thus, t h e   a n a l y s i s  
e r r o r  was est imated  to   be  approximately less t h a n   o r   e q u a l   t o  1 percent   o f   the   t rue  
PDF. 

Figure  16  presents  examples of a t y p i c a l   s e t  of PDF d a t a   f o r   t h e   s t a t i c   t e s t   a t  
1 2  000 and  13 500 rpm for   the   p ressures   measured  on t h e   c o r e   s t a t o r   a t   l o c a t i o n  A. 
I t  can   be   seen   tha t   the  PDF of t h e   s i g n a l   a t   1 3  500 rpm a p p e a r s   t o  be  almost  Gaussian 
shaped  with  an  estimated PDR e q u a l   t o  1.1. A t  1 2  000 rpm, the  P D F  shows t h a t  a 
s t rong,   constant   ampli tude  tone i s  contained i n  t h e   s i g n a l   w i t h   t h e  PDR e q u a l   t o  1.5. 

Figure 1 7  p re sen t s  a graphic   d i sp lay  of the PDR a s  a funct ion of the  engine 
r o t a t i o n a l   s p e e d   f o r   t h e   s t a t i c   t e s t s .  The PDR da ta   a re   p resented   for   the   core-  
s t a t o r   l o c a t i o n s  i n  f i g u r e   1 7 ( a )  and for   the   bypass-s ta tor   loca t ions  i n  f i g u r e   1 7 ( b ) .  
A comparison of the two da ta  sets ind ica t e s   t ha t   t he   co re  F1 tones  tend  to be l e s s  
s t ab le ,   w i th  less f luc tua t ion   i n   s t ab i l i t y   a s   speed   i nc reases ,   t han   t he   bypass   t ones .  
Thus,  the  core F1 tones  are   obscured by random noise,  are  themselves  narrow-band 
random noise,   or  have  unsteady  amplitudes.   Generally,   the  bypass F1 tones do not 
seem t o  be narrow-band random noise  b u t  do   appear   to   f luc tua te   in   s t rength  of ampli- 
t u d e   s t a b i l i t y .  

Although  not  presented,  the PDF ana lys i s  of the  high-speed-compressor F2 BPF 
tone  data  showed a l l   a m p l i t u d e s   t o  be Gaussian  dis t r ibuted.   This  would be compatible 
wi th   acous t i c   s igna l s  which  would propagate  through a turbulent-f  low environment, 
such as t h a t  which e x i s t s  from the  core  compressor  to  the  bypass-stator  area.  

Fl ight-Test   Resul ts  

Fo r   t he   f l i gh t  tests, s t a to r -p res su re   da t a  were ob ta ined   fo r  10 d i f f e r e n t   e n g i n e  
speeds  from a nominal  6700 rpm to  approximately 15 000 rpm.  The narrow-band (50-H~ 
BW) spec t r a  of the  unenhanced  pressures  measured a t  each  locat ion on t h e   s t a t o r s   f o r  
each  engine  speed  are   presented  in   f igure  18.  The da ta  show the  BPF for   the  low- 
speed  fan  (F1) and high-speed  compressor  (FZ)  with  the  related  harmonics and  combi- 
na t ions  of F1 and F2. 

The da ta  are p resen ted   i n   f i gu res  19 t o  21 t o   i n d i c a t e  how the  magnitudes of t he  
FPLIs chanqed f o r   t h e  F1 BPF as a func t ion  of engine  speed  and  spanwise  location. 
Figure 19 compares the  core  and  bypass  levels  as a func t ion  of engine  speed.  This 
f i g u r e  shows the   core   p ressures   a t   the   fan- ro tor  BPF ( F1 1 f o r   l o c a t i o n s  A and B to   be 
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q u i t e   d i f f e r e n t   f r o m   t h e   b y p a s s   p r e s s u r e s  measured a t  l o c a t i o n s  C, D, and E. The 
co re  FPL's remain  about  10 dB above  the  broadband  levels   and  smoothly  increase as t h e  
engine  speed  increases .  The broadband  FPL's fo r   t he   bypass   da t a   have   abou t   t he  same 
magnitude  and  trend  with  engine  speed as  t h o s e   f o r   t h e  core. The FPL's a t  t h e  F1  BPF 
fo r   t he   bypass   l oca t ions ,  however, show a l a r g e   f l u c t u a t i o n   o f   v a l u e s   f o r   i n c r e a s i n g  
engine  speed.  Rapid  changes i n   l e v e l   f o r  a l l  bypass   loca t ions  occur as the   eng ine  
speed moves from  9525 t o  10 91 7 rpm. Behavior i n   t h i s   r e g i o n  is thought t o  be incon- 
s i s t en t   w i th   behav io r   wh ich  may be due t o  wake changes  alone.  Thus, nonuni formi t ies  
i n   r o t o r   e x i t   f l o w   a n d   a e r o a c o u s t i c  phenomena may be i n f l u e n c i n g   t h e   s t a t o r  pres- 
sures .   (See   re fs .  25 and 29. ) 

Figures  20 and 21 p r e s e n t   t h e   s p a n w i s e   d i s t r i b u t i o n   o f   t h e  F1 f l u c t u a t i n g  
p r e s s u r e   l e v e l s  a t  t h e  BPF fo r   t he   eng ine   speeds   ob ta ined   du r ing   t he   f l i gh t s .   F ig -  
u r e  20 s h m s   t h a t   a l o n g   t h e   c o r e   s p a n ,   t h e r e  i s  a un i fo rm  f luc tua t ing   p re s su re  a t  t h e  
BPF. There is a s l i g h t   d e c r e a s e   i n  magnitude i n  a r a d i a l   d i r e c t i o n  a t  any  one  engine 
speed  except  a t  13  296 rpm, where t h e r e  i s  a r a p i d  rise i n   l e v e l .  lhis gene ra l   un i -  
formi ty  is  n o t   a p p a r e n t   f o r   t h e   s p a n w i s e   d i s t r i b u t i o n   o f   t h e   b y p a s s   d a t a   p r e s e n t e d   i n  
f i g u r e  21. Th i s   f i gu re  shows t h a t  a t  t h e   t h r e e   h i g h e s t   s p e e d s  of  14  880,  13 296, 
and 1 1  919 rpm, t h e r e   t e n d s   t o  be a un i fo rm  f luc tua t ing  pressure on t h e   s t a t o r s  
excep t  a t  t h e  t i p  l o c a t i o n  E, where a 10-dB rise occurs  a t  11 919 rpm. There i s  a 
c o n s t a n t   d e c r e a s e   i n   t h e   f l u c t u a t i n g   p r e s s u r e   f o r   t h e   e n g i n e   r o t a t i o n a l   s p e e d s  
between  10  917  and  9525 rpm as the   pos i t ion   rad ia l ly   changes   f rom  loca t ion  C t o  E. 
The lowest  speeds  of  8927, 8324,  and  6708 rpm t e n d   t o   e x h i b i t  a s p a n w i s e   i n c r e a s e   i n  
t h e  F P L ' s ,  which i s  i n i t i a l l y   r a p i d   f o r  8927  and  8324 rpm. 

The s t ead iness  of the  ampli tudes of these  F1 BPF's were inves t iga t ed   i n   an  
a t t empt   t o   ga in  an in s igh t   i n to   t he   f l uc tua t ing -p res su re   da t a .   F igu re  22 shows the 
PDR of the  core  and bypass  data as a func t ion  of the  enqine  speed. The core   da ta  
( f i g .  22 ( a )  ) show t h a t  as the  engine  speed  increased,   the   s teadiness  of the F1 
ampl i tudes   genera l ly   increased ,   thus   ind ica t ing  less turbulence   o r   an   increase   in  
ampl i tude   s t ab i l i t y .   Th i s  is  no t   s een   i n   f i gu re   22 (b )  which shows t h a t  as the  engine 
speed  increases ,   the   unsteadiness  of the  ampli tudes of the BPF's i nc rease ;   t ha t  is, 
t h e r e  is a genera l   decrease   in  PDR, thus   ind ica t ing   grea te r   tu rbulence   o r  a decrease 
i n   a m p l i t u d e   s t a b i l i t y .  

The FPL's associated  with  the  high-speed-compressor  blade-passage  frequency 
(F2)  were measured f o r   t h e   f l i g h t  case and are p resen ted   i n   f i gu re  23 as a func t ion  
of the engine  speed.  These  data, as discussed earlier, are be l i eved   t o  be acous t i c  
pressures  and  can be s e e n   t o  have a greater   magni tude  in   the  core  area ( f i g .   2 3 ( a )  
than  in   the  bypass  area ( f ig .   23 (b ) ) .   Add i t iona l ly ,  a l l  PDF's of the F2 d a t a  were 
analyzed and observed  to  be Gaussian  shaped, a c h a r a c t e r i s t i c  of narrow-band random 
noise .  

I t  is be l ieved   tha t   the   core  FPL's e x h i b i t   d i f f e r e n t   c h a r a c t e r i s t i c s  from the  
bypass FPL's because of d i f f e rences  between  the  f low  distributions which ex is t   a round 
the  spinning-rotor   hub,   within  the  core   duct ,  and wi th in  and along  the walls of the 
bypass  duct.   These  f low  differences would r e s u l t  from  hub  and w a l l  boundary-layer 
e f f ec t s ,   f l ow  sepa ra t ion  and vortex  shedding from ro to r   b l ades ,   ro to r -b l ade   t i p s  
cutt ing  through  the  bypass-duct w a l l  boundary  layer, and secondary  flow. (See 
r e f s .  9 t o  16.)   Additionally,  it is known t h a t  a rad ia l ly   asymmetr ica l  wake p r o f i l e  
is  l i k e l y   t o   e x i s t   b e h i n d  a ro to r   b l ade   ( r e f s .  1 2 ,  26, and  30)  and tha t   t he   b l ade  
s t i f f e n e r s   a f f e c t   t h e   f l o w  and pressure  losses   over   the  fan  blade  ( ref .  31 1. The 
common w a l l  shared by the  core  and bypass  ducts,   al though unknown i n  its e f f e c t s ,  is  
expec ted   t o   compl i ca t e   fu r the r   t he   i n t e rp re t a t ion  of the  measured  pressures. 
F ina l ly ,   th i s   nonuni formi ty  of the   spanwise   d i s t r ibu t ion  of the  core  and  bypass FPL's 
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may be r e l a t e d   t o  wake var iance from ro tor   b lade  to  ro tor   b lade ,  which is caused by 
blade-geometry  variance  due  to  fabrication and  uneven  wear. 

For the   f l igh t   da ta ,   c ross -spec t ra   t echniques  were used to   obtain  coherence and 
,phase information  about   the  s ignals .  I n  p a r t i c u l a r ,  it w a s  d e s i r a b l e   t o  compute the  
t r a c e   v e l o c i t y  of possible   acoust ic   or   convected wake speeds  a long  the  s ta tor   spans.  
I f   t h i s   cou ld  be accomplished, it was an t ic ipa ted   tha t   secondary   o r   th ree-d imens iona l  
f low,   as   wel l   as   acous t ic   p ressure   s igna ls ,   could  be f i rmly   e s t ab l i shed .  

Typ ica l   r e su l t s  of the  coherence and  phase  measurements are p resen ted   i n   f i g -  
ures  24 to  26 for   the  three  engine  speeds of 13  296 , 11 91 9 , and 10  434 rpm. These 
speeds  were  chosen  to   represent   supersonic ,   t ransonic ,   and  subsonic   blade  t ip   speeds,  
respec t ive ly .  For some  of the   da ta   in   these   f igures ,   coherence   b lanking  w a s  used a t  
the  0.5 l eve l .  Thus, when used,  only  coherence  values  greater  than  or  equal  to 0.5 
w e r e  displayed.  It can  a lso be not iced   tha t   the   phase   da ta  show an  expanded s c a l e  
when compared  with  the  coherence-frequency  scale.  This w a s  done t o   t r y   t o   d i s p l a y  
the  phase  measurements more c l e a r l y .  The da ta  of f i g u r e s  24 t o  26 a re   p re sen ted   t o  
ind ica t e   t he  complex  environment of t h e   s t a t o r s .  The coherence  data may be s e e n   t o  
be gene ra l ly  low (below 0.5) f o r  most f requencies   except   for   the  F1 BPF, some F1 
harmonics,  and some of t he  F2 BPF harmonics.  For  the  low-coherence  values,  there i s  
a s iqn i f i can t   deg ree  of nonrelatedness  between  the two s i g n a l s  and there  is a l a r g e r  
random e r ro r   t han   i f   t he   s igna l s   a r e   h igh ly   cohe ren t  ( y 2 (  f ) > 0.7). Addi t ional ly ,  
the  phase  data   associated  with  the  coherence  data   general ly  show s i g n i f i c a n t   s c a t t e r  
a t   f r e q u e n c i e s  above  the F1 BPF. I n t e r p r e t a t i o n s  of these  data   are   l imited  because 
of two reasons: ( 1  ) Low-coherence values  have  large random er rors   assoc ia ted   wi th  
the  measured  phase,  and ( 2 )  high-coherence  values  for  the F1  BPF and its harmonics 
have no cons is ten t   phase   re la t ionships .  

Regardless of t h e s e   d i f f i c u l t i e s ,   s e v e r a l   i n t e r e s t i n g   o b s e r v a t i o n s  may be made 
about   the   resu l t s .   F igure  24 presents  the  coherence and phase   re la t ionships   for   the  
pressures  measured a t  the   core-s ta tor   loca t ions .   This   f igure  shows t h a t  a high 
coherence  (above 0.7) ex i s t ed  between loca t ions  A and B a t  both  the F1  BPF and 
2F2 BPF for   the   th ree   engine   speeds .   This   impl ies   tha t   a t   these   f requencies   the  
p r e s s u r e s   a r e   l i n e a r l y   r e l a t e d .  A t  severa l   o ther   f requencies  which  do not seem t o  be 
r e l a t e d   t o   t h e  F, o r  F2 compressor,  the  coherence may be seen to be high,  showing 
a high  degree of r e l a t edness  of t he   p re s su res   a t   t hese   f r equenc ie s .  The s ign i f i cance  
of t h i s ,  however , is unclear .  

The da ta   reduct ion  w a s  designed so t h a t  a pos i t ive   s lope   for   the   phase   da ta  
would ind ica te   f low moving r a d i a l l y  outward and, )a  . .negative slope would ind ica te   f low 
moving r a d i a l l y  inward. The phase  relationships  between  the  pressures  measured a t  
loca t ions  A and B i n  f i g u r e  24 show wide scattep. .  a t  ;the frequencies  above  the F1  BPF 
and little s igni f icance   a t   the   o ther   f requencies   -where   there  is low coherence.  Thus, 
a l though  the slope of the  phase  response up t o   t h e  F1  BPF of the  core   data  may appear 
pos i t i ve ,   cau t ion  is s u g g e s t e d   i n   i n t e r p r e t i n g   t h i s  as r a d i a l l y  outward  flow. 

The coherence  and  phase  pattern  for  the  pressures  measured on the  bypass stator 
a t  loca t ions  C and D ( f i g .  25) show the  same type of information.  Coherence is low 
(below 0.5) a t  most   f requencies   except   for   the F1  BPF and some of the  harmonics. A t  
the  subsonic  speed,  the  third  harmonic of the  high-speed  compressor (3F2)  is seen   to  
have a high  coherence.  Thus, it appears   tha t   there  is a l i nea r   r e l a t ionsh ip   on ly  a t  
the  BPF, a t  some of the harmonics of the  low-speed  compressor,  and a t  the   t h i rd   ha r -  
monic  of the  high-speed  compressor. The phase  data show a genera l ly   nega t ive   s lope  
up to   about  4000 Hz and then   exhib i t   Parge   sca t te r .   This   sugges ts  a cau t ious   i n t e r -  
p r e t a t i o n  of poss ib l e   t u rbu len t   f l ow moving rad ia l ly   inward .  
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Data  showing  the  coherence  and  phase  relationship  between  the  pressures  measured 
a t  the  D and E loca t ions  are p r e s e n t e d   i n   f i g u r e  26. Especially  high  coherence 
( l a r g e r   t h a n  0.8) is seen a t  the  subsonic  and supersonic  speeds  for  the  low-speed-fan 
BPF (F1)  and its harmonics  and for  the  high-speed-compressor BPF (2F2)  a t  the  second 
harmonic. A t  the   t ransonic   speed ,   the  Fl BPF coherence is not  very  high  (0.65). 

Thus, t he   da t a   o f   f i gu res  25  and 26 sugges t  a s t r o n g   l i n e a r   r e l a t i o n s h i p   b e t w e e n  
the  pressures   measured by the  bypass   t ransducers  a t  subsonic   and  supersonic   blade t i p  
speeds  but  a cons ide rab ly   r educed   l i nea r   r e l a t ionsh ip  a t  t r anson ic   b l ade  t i p  speeds 
f o r   t h e  F1 BPF pressure.  The phase   da ta   sugges t  a f l a t - s lope   i nphase   r e l a t ionsh ip  
below  about 4 kHz f o r   t h e   s u b s o n i c   b l a d e  t i p  speed,  where  the  coherence  appears t o  be 
l a rge r   t han  0.7. This is  no t   be l i eved   t o   be   r ep resen ta t ive  of  secondary  flow. The 
data  above  about 4 kHz fo r   t he   subson ic   speed ,   and   fo r  a l l  f requencies  a t  t h e  
t r a n s o n i c   a n d   s u p e r s o n i c   b l a d e   t i p   s p e e d s ,   e i t h e r   e x h i b i t   l a r g e   s c a t t e r   o r  may not   be 
rel iably  interpreted  because  of   the  low-coherence  values .  

Although  the f l i g h t   d a t a  of f i g u r e s  24 t o  26 show high-coherence  values a t  the 
r o t o r  BPF and its harmonics,   the  wide  scatter of the  phase  data and  low-coherence 
values   precluded  any  meaningful   interpretat ion of wave-trace  veloci t ies .   Similar  
behavior  has  been  reported  for some s t a t i c   t e s t s .   ( S e e  ref. 5.) Such behavior is 
a t t r i b u t e d   t o   t h e   s e v e r i t y  of the  environment ,   that  is ,  turbulent   f low and hard 
re f   l ec t inq   sur faces .   (See   re fs .  5 and  25.) 

Comparison of S t a t i c  and Fl ight   Resul t s  

Some comparisons  of  the s t a t i c   d a t a   w i t h   t h e   f l i g h t   d a t a   f o r   t h e   f a n - r o t o r  
F1 BPF tone   ( f ig s .  11 and  19)  for  comparable  engine  speeds are p r e s e n t e d   i n   f i g u r e s  
27 and 28. Figure 27 shows t h a t   t h e   c o r e - s t a t o r   s t a t i c ,   a n d   f l i g h t   d a t a  appear t o  
have  the same t r end .   Thus ,   bo th   t he   s t a t i c   and   f l i gh t  FPL's  a t   t h e  F1 BPF for core  
loca t ions  A and B appear t o  increase   genera l ly   up   to   approximate ly  1 2  000 rpm, where 
t h e   p r e s s u r e s  a t  l o c a t i o n  A t h e n   a p p e a r   t o   d r o p   i n   v a l u e   a t   t h e   n e x t   h i g h e r   e n g i n e  
speed. The pressures  measured a t  loca t ion  B, however, t e n d  t o   i n c r e a s e   d r a m a t i c a l l y  
for   the   next   h igher   engine   speed .  As d i s c u s s e d   e a r l i e r ,   t h e s e   c o r e   d a t a  of f i g u r e  27 
do  not   have  the same t rend   as   the   bypass   da ta .  A comparison of the  bypass-s ta tor  
s t a t i c  and f l i g h t   d a t a   a r e   p r e s e n t e d  i n  f i g u r e  28 a s  a function  of  engine  speed. 
a h i s   f i g u r e  shows the  narrow-band FPL's a t   t h e   f a n - r o t o r  F1 BPF tone  as  measured a t  
l o c a t i o n s  D and E. The d a t a   f o r   l o c a t i o n  E show the  same g e n e r a l   t r e n d   f o r   t h e  
s t a t i c  and f l i g h t   t e s t s ;  however, t r e n d   d i f f e r e n c e s   b e t w e e n   t h e   s t a t i c   a n d   f l i g h t  
d a t a   f o r   l o c a t i o n  D a re   ev ident   for   increas ing   engine   speeds .  

One  may compare the   spanwise   d i s t r ibu t ions   o f   t he  narrow-band FPL's of   the 
F1 BPF t o n e s   f o r   t h e   s t a t i c   a n d   f l i g h t   d a t a  by r e p l o t t i n g  some of t he   da t a   p re sen ted  
i n   f i g u r e s  1 2 ,  20, and 21. These s ta t ic  and f l igh t   compar isons  are p r e s e n t e d   i n   f i g -  
u r e s  29 and 30 f o r   d a t a   t h a t  were  measured a t  comparable  engine  speeds  and  locations. 
Figure 29 shows t h a t   f o r   t h e   c o r e   d a t a ,   t h e   s t a t i c   t e s t s  showed i n c r e a s i n g   l e v e l s   i n  
a rad ia l ly   ou tward   d i rec t ion   for   engine   speeds  of  6750 and  13 500 rpm, decreas ing  
l e v e l s   a t  1 2  000 rpm, and   cons tan t   l eve ls  a t  10 500 rpm. The f l i g h t   d a t a  show only 
one  engine  speed, 1 3  296 rpm, which r e s u l t s   i n   a n   i n c r e a s i n g  FPL i n  a r a d i a l   d i r e c -  
t i on .  The FPL's dec rease   r ad ia l ly   ou tward   fo r  1 1  919  and 1 0  434 rpm and  appear  con- 
s t a n t   f o r  6708 rpm. 

Figure 30 presents  a similar  spanwise-distribution  comparison of the s ta t ic  and 
f l i g h t   d a t a   f o r   t h e   b y p a s s   s t a t o r .  The s t a t i c - t e s t   d a t a  show, f o r   l o c a t i o n s  D and E, 
i nc reas ing   l eve l s  i n  a radial ly   outward  direct ion  for   engine  speeds of 6750,  10  500, 
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1 2  000, and 1 3  500 rpm. A t  t he   comparab le   f l i gh t - t e s t   speeds ,   t he   f l i gh t   da t a  
e x h i b i t   s l i g h t ,   r a d i a l l y   o u t w a r d   i n c r e a s e s   i n  FPL a t  6 7 0 8  and 1 3   2 9 6  rpm, a s h a r p  
d e c r e a s e   i n  FPL a t  10 4 3 4  rpm, and a s h a r p ,   r a d i a l l y   o u t w a r d   i n c r e a s e   i n  FPL a t  
1 1  919 rpm. 

The da ta  of f i g u r e s  27 to  30  suggest  a complex environment i n  which the   core  and 
bypass   s t a to r s  are immersed.  Thus, no clear t rends  seem ev iden t   fo r   t he   va r i a t ion  of 
t he  FPL with  engine  speed or for   the   un i formi ty  of the   spanwise   d i s t r ibu t ion  of t he  
FPL's on the  core  and  bypass   s ta tors .  As discussed earlier, this   environment  is 
b e l i e v e d   t o  be t h e   r e s u l t  of the  differences  in  boundary-layer  development  along  the 
ro to r   b l ades ,   d i f f e rences   i n  hub  and  bypass-duct w a l l  boundary  layers,   suspected 
asymmetrical wake p r o f i l e s  due t o   t h e   r o t o r - b l a d e   s t i f f e n e r s ,  and three-dimensional 
flow. 

Figures  31 and 32 presen t   t he   d i f f e rences   i n   t he   magn i tudes  between  the s ta t ic  
and f l i g h t  FPL's f o r   t h e  f an-rotor  F1 BPF tone and  broadband  noise. The f l i g h t   l e v -  
els were sub t r ac t ed  from the  s ta t ic  l e v e l s  and are presented as a func t ion  of engine 
speed. It  is recognized   tha t   a l though  the   f l igh t  and s ta t ic  engine  speeds are n o t  
equal ,   they are w e l l  wi thin  the  experimental   error   associated  with  the  ampli tudes.  
Figure 3 1 ,  which p r e s e n t s   t h e   s t a t i c - t o - f l i g h t   d i f f e r e n c e s   f o r   t h e  FIBPF l e v e l s ,  
shows t h a t   t h e   l a r g e s t   p o r t i o n  of t he   d i f f e rences  lies above the   ze ro   r e fe rence   l i ne  
with  the s ta t ic  tests producing  hiqher   ampli tudes  than  the  f l ight  tests by about  
5 dB. The same observat ion may be made about   the  associated  broadband  levels   pre-  
s e n t e d   i n   f i g u r e  3 2 .  A poss ib l e   r ea son   fo r   t he   h ighe r  s ta t ic  l e v e l s  is t h a t   t h e  
o p e r a t i n g   l i n e   f o r   t h e  s ta t ic  tests w a s  h i g h e r   t h a n   f o r   t h e   f l i g h t  tests , thus  pro- 
ducing  higher   rotor   loading.   (See  ref .  21 . ) Also ,  the  engine  did  not  have  an  inflow 
cont ro l   device   dur ing   the  s ta t ic  tests. I t  is known that   because of the   noniso t ropic  
na ture  of t h e   i n l e t   t u r b u l e n c e  which occurs during  the s ta t ic  tests, both  tone  and 
broadband  acoust ic   noise   levels  are la rger   dur ing  s t a t i c  tests than   du r ing   f l i gh t .  
(See r e f .  3 . )  Addi t iona l ly ,   re fe rence  21 compared the  tone and  broadband f a r - f i e l d  
a c o u s t i c   n o i s e   f o r   t h i s   e n g i n e  and showed the s t a t i c  data (obtained  without  an  inflow 
control .   device)   to  be h i g h e r   t h a n   t h e   f l i g h t   d a t a .  

The r e s u l t s  of comparing the   s t ead iness  of the  amplitudes of the  fundamental 
tones as measured f o r   t h e  s t a t i c  and f l i g h t  data ( f i g s .  17 and 22) are p r e s e n t e d   i n  
table I11 and f i g u r e  3 3 .  Table I11 shows that  the   s t r eng th  of the  tone is  not  as 
l a rge   fo r   t he   co re  FPL's as for   the   bypass  FPL' s , and f i g u r e  33 shows t h a t   t h e r e  
appea r s   t o  be some d i f f e r e n c e  between  the static and f l igh t   envi ronment  as measured 
by t h e   s t a b i l i t y  of these  tones.  Thus, f i g u r e  33 appea r s   t o  show t h a t   f l i g h t - t o n e  
a m p l i t u d e   s t a b i l i t y  is somewhat g rea t e r   t han   s t a t i c - tone   ampl i tude   s t ab i l i t y .  

CONCLUDING REMARKS 

S ta to r -vane   f l uc tua t ing   p re s su res  were measured on a highly  instrumented,  
f l i g h t - c e r t i f i e d  JT15D-1 turbofan  engine which w a s  used i n  a program  by the  Nat ional  
Aeronautics and  Space  Administration to  s tudy  forward-speed  effects  on fan-tone 
noise.   These  data,   obtained for s ta t ic  and f l i g h t  tests, are be l i eved   t o  be unique 
and  help fill the  need for   information  about   s ta tor-vane  response  for   an  engine  in  
f l i g h t .  

Pressure  time traces ( r e s u l t i n g  from the  aerodynamics of the r o t o r  wakes) were 
measured a t  individual   locat ions  a long  the  leading  edge of both a core and  bypass 
s t a t o r .  Data were obtained  which showed nonuniform  changes in   t he   ampl i tudes  and 
wave shape of the   p ressure   wi th   respec t  to  time fo r   bo th  a spanwise  dis t r ibut ion  of  

13 



these   p ressure  traces a t  a constant  engine  speed  and for these   p re s su re  traces a t  any 
one   loca t ion   for   d i f fe ren t   engine   speeds .  The core spanwise   d i s t r ibu t ions  of the 
f l u c t u a t i n g   p r e s s u r e   l e v e l s  (FPL) a t  the fan-rotor  blade-passage-frequency fundamen- 
t a l  tones (pl BPF) were n o t i c e a b l y   d i f f e r e n t  from  the  bypass-stator FPL's as a func- 
t i o n  of  engine  speed. The nonuniformity  of these d a t a  are believed  due to  the  com- 
plex  acoustic/aerodynamic  .flow  environment. 

The core-s ta tor   vanes   exhib i ted   fan  F1 BPF ampl i tudes   wi th   p robabi l i ty   dens i ty  
r a t i o s  (PDR)  lower  than  those  for  the  bypass-stator-vane  responses.   This  implies 
t h a t   t h e y  were not  as stable as the bypass-stator-vane  responses. A comparison of 
core and  bypass PDR's wi th   regard   to  s ta t ic  and f l i g h t   c o n d i t i o n s   i n d i c a t e d   t h a t  some 
d i f f e rence   ex i s t ed ,   t hus   sugges t ing  that the s ta t ic  environment may have  produced 
more unstable   ampli tude  tones  than  the  f l ight   environment .  The magnitudes of t h e  
responses   for  the s ta t ic  tests were g e n e r a l l y  5 dB g r e a t e r   t h a n   t h o s e   f o r   t h e   f l i g h t  
tests. These r e s u l t s  are b e l i e v e d   t o  be due t o   t h e   a n i s o t r o p i c   n a t u r e  of t h e   i n l e t  
f low  and  higher  rotor  loading  during  the s t a t i c  tests. There w a s  a high  spanwise 
coherence   be tween  s ta tor   t ransducers   for   the   f luc tua t ing   pressures  a t  t he   f an  BPF's 
which ind ica t ed  that  they were exc i t ed  by the same fo rc ing  mechanism. Disturbance 
trace v e l o c i t i e s  however  could  not be i n t e r p r e t e d  a t  the  BPF f l u c t u a t i n g  pressures 
because of the  complex  environment. 

F luc tua t ing   p re s su res  were d e t e c t e d   o n   t h e  stator vanes a t  blade-passage f re- 
quencies  of  the  high-speed  core  compressor.  These l e v e l s  were h ighe r  on t h e   c o r e -  
s t a t o r  vane  than  on  the  bypass-stator  vane,  and a l l  f l u c t u a t i n g   p r e s s u r e   l e v e l s  had 
probabi l i ty   dens i ty   func t ions   typ ica l   o f   nar row-band random noise.  These f l u c t u a t i n g  
p r e s s u r e s  are b e l i e v e d   t o  be a c o u s t i c   s i n c e   f a r - f i e l d   a c o u s t i c   t o n e s  a t  these  high-  
speed-compressor  fundamental  tones (F2 BPF) have  been  measured* 

Langley  Research  Center 
National  Aeronautics and  Space  Administration 
Hampton, VA 23665 
February 16,  1984 
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TABLE I.- DESIGN  FEATURES O F  MODIFIED JT15D-1 ENGINE 

Fan p r e s s u r e   r a t i o  ............................................................. 1.5 

Bypass r a t i o  ................................................................... 3.3 

Hub / t ip   r a t io  ................................................................. 0.405 

Rotor  diameter. i n  ............................................................. 21 

Maximum fan   ro ta t iona l   speed .  rpm ............................................ 16 000 

Rotor  blades ................................................................... 28 

Core-stator  vanes .............................................................. 71 

Bypass-stator  vanes ............................................................ 66 

Rat io  of number of bypass-s ta tor   vanes  to   rotor   blades ......................... 2.36 

Rat io  of  number of core-s ta tor   vanes   to   ro tor   b lades  ........................... 2.54 

Rat io  of rotor-blade  spacing  to   bypass-s ta tor-vane  spacing ..................... 1.83 

Rat io  of rotor-blade  spacing  to   core-s ta tor-vane  spacing ....................... 0.63 

Primary  exhaust  area.  in2 ...................................................... 79 

Bypass exhaust   area.  i n 2  ....................................................... 190 
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TABLE 11.- METAL ANGLES AND DIMENSIONS OF ROTOR AND STATOR VANES 
OF JT15D-1 ENGINE 

Radia l   loca t ion  
above  root,  in. 

0.30 
.55 

1.25 
2.50 
3.75 
3.99 
4.74 
5 .OO 
5.24 
6.20 

( a )  Rotor  blade 

Metal ang le s  a t  b lade   loca t ions ,   deg  

I n l e t  

44.0 
45.5 
49.8 
51 .4 
58.5 
59.7 
63.6 
64.9 
66.3 
73.2 

Stagger 

17.0 
21 .4 
33.7 
45.2 
52.6 
54.2 
58.3 
61 .O 
62.6 
69.1 

. .  

~~ 

Exi t  

-10.8 
4.0 

12.7 
27.8 
43.7 
45.2 
49.8 
51 .4 
53.2 
60.4 

(b)   S ta tor   vanes  

Metal  angles a t  vane  locations,   deg 

I n l e t  Stagger Exi t  
Location 

I 
I Core 

Root 
SMT A 
SMT B 
Tip 

-48.4 
-46.4 
-44.2 
-40 -4 

-31 - 3  
-31 -2  
-30 a6 
-30 e7 

-18  e3 
-1 7 - 6  
-1 5 -7  
-13.3 pF SMT E 

B Y F S  S 

-39 -0  -1 9.6 
-36 3  -16.9 
-35.5 -1 5 -3  
-34.4  -14.0 
-34 e 0  -1 4 e5 

~~ . -  

6.7 
7.1 
7.3 
7.4 
7.5 

( c  ) Dimensions 

Component Average  chord,  in. 

Rotor  blade .......... 
Core-stator vane . . . . . 0.88 
Bypass-stator  vane . . . 1.53 

Average  span,  in. 

6.2 
1  .89 

3.3 

S o l i d i t y ,  6 

1.93 
1.88 

~ 
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TABLE 111.- COMPARISON  OF  mASURED  PROBABILITY  DENSITY  RATIO  FOR  STATOR 
F1  BPF  FLUCTUATING  PRESSURES AS A FUNCTION OF ENGINE  SPEED 

[ S t a t i c  and f l i g h t   t e s t s 1  

!- 

probab i l i t y   dens i ty   r a t io   a t   eng ine   ro t a t iona l  speed Of - 
S MT 

6750 rpm 13  296 rpm I 13 500 rpm 11  91 9 rpm 12 000 rpm 10 434 rpm 10 500 rpm 6708 rpm 
I 
I 

( f l i g h t )  ( S t a t i c )  ( f l i g h t )  ( s t a t i c )  ( f l i g h t )  ( s t a t i c )  ( f l i g h t )  ( s t a t i c )  

I Core-stator vane 

I 
A 

2.4 2.1 1.2 1 .o 1 .o 1 .o 1 .o 1 .O B 
1 .o 1 .o 1 .5 1.5 1.3 1.2 1.2 1 .O 

Bypass-stator vane 

D 2 .o 1.5 1.2 2.3 2.2 1.5 2.7 2.5 
E 1.9 1 .9 2.4 2.6 1 .o 1 .o 2.9 2.5 



-Inlet-- 

- 

t- JT15D-1- 
engine 

66 bypass 
vanes 

--Muffler-- 

c 

L16  core-compressor  blades 

6 support  struts 

28 fan  blades 

(b) Cross-sec t iona l   ske tch  of JT15D-1 eng ine   i n  test conf igura t ion .  

Figure 1.- Photograph and ske tch  of JT15D-1 engine  used  in s ta t ic  and f l i g h t  tests. 
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(a) Overall view of f an  rotor blades. 

(b) Close-up view of fan rotor blades. 

Figure  2 .- JT15D-1 rotor-blade assembly. L-84-10 
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L-80-896 

(a)   Stator-vane  assembly.  

22 

(b)  Transducer  locations.  All transducers 
are 0.15 i n .  from leading  edge. All 
dimensions  are i n  i n c h e s .  

Figure 3 . -  Photograph and sketch of stator-vane 
assembly and transducer  locations.  



" 

L-82-117 

Figure 4.- ST1  5D-1 engine mounted on outdoor static-test s tand  a t  t he  
A m e s  Research  Center. 
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Transducer housing, 6- Epoxy f i  I let 

Optical I 

EpoxyA LPressure-sensit ive  diaphragm 
w i th  0,0009-in. RTV overcoat 

( a )  Transducer  mounting. 

Ai rc ra f t  

(b) Sketch of stator-vane-mounted  transducer  data  system  in ST1 511-1 engine. 

Figure 6.- Transducer-mounting  technique  and  sketch of data-acquisit ion  system. 
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E n g  i ne speed, 
r Pm 

13 500 0 

Pressure,  
psi  

0 
12 000 

I I I I I I I I 
Time,  sec 

(a) Unenhanced average   p ressure  time traces. 

Engine speed, 
rDm 

0 13 500 
t 

.t. 0.2 psi 
I 

0 12 000 

1 

Pressure,  
psi  

0 1  10 500 

O k  6 750 
k 0 . 5  msec 

I I I I I I I I 
Time,  sec 

(b) Signal-enhanced  pressure t i m e  traces. 

F igure  7.- Comparison of unenhanced  average  pressure  and 
signal-enhanced  pressure t i m e  traces for c o n s t a n t   s t a t o r  
l o c a t i o n  D €or d i f f e r e n t  static-test engine speeds. 
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Core 
location Pressure,  0.70 

psi  ps i A 

Pressure,  0.70 
psi psi Core 

location 
B 

Pressure,  0.7 
ps i psi 

I 

Pressure,  0 7 
psi psi  

0 
Time,  sec 

Bypass 
location 

D 

Bypass 
location 

E 

Figure 8.- Comparison of signal-enhanced  pressure time t races   a t  core- and bypass- 
stator  locations for static-test   constant engine speed of 13 500 rpm. 
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140 

Engine speed, 
140 rPm 

13 500 

140 
FPL, 
dB 12 000 

140 

10  500 

140 

6 750 

Frequency, kHz 

( a )  Location A. 

Engine speed, 
rPm 

140 
13 500 

FPL, 140 
dB 12 000 

140 
10  500 

140 
6 750 

- 

0 
". 

4 8 12 16 20 
Frequency, kHz 

( b )  Location B. 

Figure 9.- Comparison of narrow-band (50 H z )  f l u c t u a t i n g   p r e s s u r e  
spectra of core-s ta tor   vanes   for  static-test engine speeds. 
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14( 

14C 

FPL, 
dB 

130 

130 

Engine speed, 
rPm 

13 500 

-T 
l O d B  j 
1 

12 000 

10 500 

6 750 

4 8 12 16 20 
Frequency ,  kHz 

(a ) Location D. 

I I 

140 

140 

FPL, 
dB I 

140 

140 

FPL, 
dB 

130 

6 750 
I I 1 I I I 
0 4 8 12 16 20 

Frequency, kHz 

(b) Location E. 

Figure 10.- Comparison of narrow-band (50 Hz) 
fluctuating pressure spectra of bypass-stator 
vanes for static-test engine speeds. 
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Location 

170 

160 

150 

FpLt 140 dB 

130 

12c 

11c 

6 
L 

A .) Broadband B. P 

I I u 
Engine speed, rpm 

8 10 12 14 x103 

( a )  Core s t a t o r .  

Location 

I I . 
6 8 10 12 14 x1~3 

Engine speed, r p m  

(b) B y p a s s  s t a t o r .  

Figure 1 1  .- Stator-vane  narrow-band (50 H z )  f l u c t u a t i n g  
pressure  levels   measured a t  f an - ro to r  F1 BPF t o n e   f o r  
s t a t i c - t e s t  engine  speeds.  
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170 

160 

FPL, 
dB 

150 

140 

170 

160 

FPL, 
dB 

150 

140 

Engine speed, 
r Pm 

0 13 500 
0 12 000 

1 I I 1 1 1 
0 20 40 60 80 100 

Span,  percent 

" 

( a )  Core s t a t o r .  Span length ,  1.9 i n .  

D E 
1 I 1 1 1 1  I I 
0 20  40 60 80 loo 

Span, percent 

( b )  Bypass s t a t o r .  Span length; 3 . 3  in .  

Figure 12.- Spanwise d i s t r i b u t i o n  of measured  narrow-band (50 H z )  f l u c t u a t i n g  
P res su re   l eve l s  of fan- ro tor  F, BPF. tone   for  static-test engine speeds. 
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160 

150 

FpL' 140 dB 

130 

120 

145 

.~ 1 
6 

( a  1 Core s t a t o r .  

h 

P 
Location 

A '1 Broadband O B  
1 I 
8 10  12 Ib x103 

Engine speed, rprn 

Engine speed, rprn 

( b )   B y p a s s   s t a t o r .  

F igu re  13.- Comparison of measured  narrow-band (50 H z )  f l u c t u a t i n g  
p res su re   l eve l s   fo r   co re   and   bypass  s t a t o r s   a t   c o r e - c o m p r e s s o r  
F2 BPF tones  for s t a t i c - t e s t   e n g i n e  speeds .  
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4 

14.- P r o b a b i l i t y   d e n s i t y   f u n c t i o n s  of s ine   s igna l   i n   Gauss i an   no i se .  
(See r e f .  27.) R = o,/an. 2 2  
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.- 0 
m + 
nf 

2 Y 
1 -  I 
1.0 1.5 2 .( 

PDR = y2/y1 

1 2.5  3.0  3.5 4.0 
Probabil ity  density  ratio, PDR 

Figure 15.- Ratio of sine  signal to  noise power as a function of probability  density 
ra t io .  (See ref. 28.) R = as/an. 2 2  
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Probability 
density, p(x) .5 - 

O b  J 
-4 -2 0 2 4 

( a )  PDF f o r   l o c a t i o n  A f o r  s ta t ic- tes t  engine  speed of 
13 500 rpm. PDR = y2/yl = 1 . l .  

Probability 31 hT T 
0 

den s i ty, p (x) 

+ I  I 
-2 -2- 0 4 

(b) PDF for l o c a t i o n  A f o r  s ta t ic- tes t  engine  speed 
of  12 000 rpm. PDR = y2  /y, = 1 .5. 

Figure 16.- Examples t y p i c a l  of  measured p r o b a b i l i t y  
dens i ty   func t ion  and PDR of amplitudes of fan-rotor  
F1  BPF tone. 
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Figure 18.- Continued. 
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Figure 19.- Stator-vane narrow-band ( 5 0  Hz) fluctuating 
pressure levels measured at  fan-rotor F, BPF tone for 
f l ight-test  engine  speeds. 
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Figure 20.- Spanwise d i s t r i b u t i o n  of co re - s t a to r  narrow-band (50 Hz) 
f l u c t u a t i n g   p r e s s u r e   l e v e l s  measured a t  fan- ro tor  F, BPF tones   for  
f l igh t - tes t   engine   speeds .   (Span   length ,  1.9 i n . )  
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Figure 21 .- Spanwise d i s t r i b u t i o n  of bypass-stator narrow-band (50 Hz) 
f l u c t u a t i n g   p r e s s u r e   l e v e l s  measuzed, a t  fan- ro tor  F, BPF t o n e s   f o r  
f l igh t - tes t   engine   speeds .   (Spaq ,>length ,  3 .3  in.)  
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Figure 22.- Comparison of p r o b a b i l i t y   d e n s i t y   r a t i o s  of f l u c t u a t i n g  
pressures  of F, BPF tones as measured a t   S t a t o r   l o c a t i o n s  for 
f l ight- tes t   engine  speeds.  
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(c)  Subsonic t i p  speed.  Engine  speed, 10  434 rpm. 

Figure 24.- Coherence  and  phase  relationships  between  pressures  measured a t  
co re - s t a to r   l oca t ions  A and B a t  supersonic ,   t ransonic ,   and  subsonic  
f a n - r o t o r - b l a d e   t i p   s p e e d s   f o r   f l i g h t  tests. 
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( a )  Supersonic  t ip  speed.  Engine  speed, 13 296  rpm. 
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( c )  Subsonic  t ip  speed.  Engine  speed, 10 434 rpm. 

Figure 25.- Coherence  and  phase  relationships  between  pressures  measured a t  
bypass-s ta tor   loca t ions  C and D a t  supersonic ,   t ransonic ,  and subsonic  
f an - ro to r -b l ade   t i p   speeds   fo r   f l i gh t  tests. 
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Figure 26.- Coherence  and  phase r e l a t ionsh ips  between pressures  measured a t  
bypass-s ta tor   locat ions D and E a t  supersonic ,   t ransonic ,  and subsonic 
fan- ro tor -b lade   t ip   speeds   for   f l igh t  tests. 
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Figure 27 .- Comparison of s ta t ic  and f l i g h t  measured  narrow-band 
(50 Hz) f l u c t u a t i n g   p r e s s u r e   l e v e l s  a t  fan- ro tor  F, t one   fo r  
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Figure 28.- Comparison of s ta t ic  and f l i g h t  measured  narrow-band 
(50 Hz) f l u c t u a t i n g   p r e s s u r e   l e v e l s  a t  fan- ro tor  F, t o n e   f o r  
bypass-s ta tor   loca t ions  D an E. 
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Figure 29.- Comparison of c o r e - s t a t o r   s t a t i c  and f l i g h t  spanwise d i s t r i -  
bution of narrow-band (50 Hz) FPL of fan-rotor  F, BPF tone. 
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Figure 30.- Comparison of bypass-stator s ta t ic  and f l i g h t  spanwise d i s t r i -  
bution of narrow-band (50 H z )  FPL of fan-rotor  F, BPF tone. 
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narrow-band (50 H z )  f l u c t u a t i n g   p r e s s u r e   l e v e l s  measured a t  
s t a t o r   l o c a t i o n s   f o r  F, BPF tones a t  tes t  engine  speeds.  
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Figure 32.- Comparison  of differences  between s ta t ic  and f l i g h t  
b roadband   f l uc tua t ing   p re s su re   l eve l s  measured a t  s t a t o r  
l o c a t i o n s   f o r  F, BPF tones a t  test engine  speeds.  
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Figure 33 . -  Comparison of d i f f e r e n c e s  between s ta t ic  and f l i g h t   p r o b a b i l i t y  
d e n s i t y   r a t i o s  of f l u c t u a t i n g   p r e s s u r e s  of F, BPF tones as measured a t  
s t a t o r   l o c a t i o n s   f o r  test engine  speeds.  
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